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Robust Superpixel Tracking via Depth Fusion
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Abstract—Although numerous trackers have been designed to
adapt to the nonstationary image streams that change over time,
it remains a challenging task to facilitate a tracker to accurately
distinguish the target from the background in every frame. This
paper proposes a robust superpixel-based tracker via depth
fusion, which exploits the adequate structural information and
great flexibility of mid-level features captured by superpixels, as
well as the depth-map’s discriminative ability for the target and
background separation. By introducing graph-regularized sparse
coding into the appearance model, the local geometrical structure
of data is considered, and the resulting appearance model has a
more powerful discriminative ability. Meanwhile, the similarity
of the target superpixels’ neighborhoods in two adjacent frames
is also incorporated into the refinement of the target estimation,
which helps a more accurate localization. Most importantly, the
depth cue is fused into the superpixel-based target estimation so
as to tackle the cluttered background with similar appearance to
the target. To evaluate the effectiveness of the proposed tracker,
four video sequences of different challenging situations are
contributed by the authors. The comparison results demonstrate
that the proposed tracker has more robust and accurate
performance than seven ones representing the state-of-the-art.

Index Terms—Computer vision, depth fusion, graph regular-
ized sparse coding, object tracking, segmentation, superpixel.

I. Introduction

THE ABILITY to design a robust object tracker has suc-
cessfully established many applications in a wide range

of fields, ranging from traffic surveillance [1], [2], human
activity analysis [3], [4], and human–computer interaction [5].
Although numerous trackers [6]–[11] have been proposed with
significant success, designing a tracker that can handle the
challenges, such as large variation of shape and illumination,
drastic pose change, small target and cluttered scene (e.g.,
similar target with background), is still a difficult task.

Existing trackers commonly exploit the cues from low-level
visual ones to high-level structural ones. The reason for ex-
ploiting this information is to construct adaptive and discrimi-
native appearance models for the target and background sepa-
ration. As mentioned in [16] and [17], although low-level cues,
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such as color, gradient and texture, are effective for feature
tracking and scene analysis [18], they are less effective in the
context of object tracking because of their weak ability of the
context exploitation for the target. For example, the ensemble
tracker [19] differentiates a target from background as a pixel-
based binary classification problem, which utilizes an eight-bin
local orientation histogram calculated on the RGB channels.
However, the pixel-based representation is rather limited in
handling heavy background clutter. Kwon and Lee [20] model
the target appearance by a group of patches, where the smooth-
ness and steepness of the patches in color are considered
as the main criterion for patch selection. While this tracker
demonstrates a robust performance for nonrigid objects, the
smoothness and steepness of the patches are vulnerable to the
heavy illumination change and background clutter. The Haar-
feature based trackers, such as online AdaBoost (OAB) tracker
[13] and multiple instances learning (MIL) tracker [6], have
the superior ability to handle severe appearance and illumi-
nation change. However, these trackers are designed for rigid
object tracking, and have poor adaptation for drastic shape
deformation and pose change. As for the high-level cues based
trackers, they commonly explore the semantic knowledge of
the object, such as contour information of the target [21], [22].
But the high-level clues themselves are difficult to extract,
which remains a question to be solved. For example, Yin
et al. [22] address the problem of tracking contour by in-
volving subspace and a contour template. However, the exact
contour is difficult to be extracted in cluttered background,
especially for the small target.

Considering the drawbacks of the low-level and high-level
cues, mid-level visual cues with more sufficient structure
information may provide a trade-off. At this level, superpixel
has been established as the most promising representation
[12], [23]. In [12], a tracker that constructs a superpixel-based
discriminative appearance model for the separation of target
and background is proposed. By contributing a confidence
map for every superpixel, the superpixels with the accepted
confidence are determined as parts of the target. While this
tracker demonstrates a convincing tracking performance for
large shape distortion and pose change in their project, it is
still vulnerable to the cluttered background. For example, if
the background has a similar appearance to the target, the
tracking results would generate drift. In addition, because of
the cluttered background, the estimated confidence map for the
small target may contain several possible candidate positions,
and lead to a false target estimation.

Besides, most existing trackers only exploit the cues ex-
tracted from RGB channels, which do not exploit the spatial
depth information of the scene. However, the depth cue,
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reflecting the distance between the scene and camera, has
robust ability to distinguish the background with the target,
even in the situation that traditional trackers cannot tackle.
As mentioned in the visual tracking review [24], one of the
main future directions of visual tracking is the combination of
different features, such as contour and texture or multimodal
sensory data. Therefore, fusing depth information is one novel
attempt to the development of visual tracking.

For effectively adapting to the target shape and pose
variation, small target and cluttered background, this paper
proposes a new superpixel-based tracker by fusing image depth
information. Different from the pixel-based fusion strategies
[25], [26], this paper aims to fuse the depth map with
the superpixel-based target estimation, which has not been
exploited in previous literature. With the flexible structure
of superpixel, the shape and pose variation can be handled.
Meanwhile, different depths of the target and background
provide a robust target extraction from cluttered background.
Because of these superiorities, more robust tracking results can
be obtained, as shown in Fig. 1.

A. Overview of the Proposed Tracker

The flow chart of the proposed tracker is illustrated in Fig. 2.
From the figure, it can be seen that the tracker is divided
into three parts: superpixel-based target estimation in the RGB
channels, target depth association in the depth channel, and
fusion of the estimated target regions from the two sources.

For the superpixel-based target estimation, it is formulated
as computing a confidence map for the target searching region.
The size of the searching region is defined as twice the
size of the estimated target in the previous frame. Then, the
region is segmented into numerous superpixels. Because the
number of the target superpixels only takes up a small part
of the searching region. The target estimation problem can be
formulated as a sparse optimal problem that each superpixel
can be sparsely represented by a set of basic elements.
To this end, this paper constructs a sparse superpixel-based
discriminative appearance model (SSDAM), which introduces
graph-regularized sparse coding (GrapghSC) for the first time
to estimate the target. With the SSDAM, a coarse confidence
map is computed. In order to refine it, the similarity of
target superpixels’ neighborhoods for two adjacent frames is
considered. In addition, to adapt to the variation caused by the
target and background, the SSDAM is constantly updated.

In terms of the target depth association, it aims to find
the optimal target depth region by matching the candidate
depth region with the predefined target depth model. For this
purpose, an efficient graph segmentation [27] is introduced to
segment the examined searching region into several smaller
ones. Then, each candidate depth region is compared with the
template by depth histogram, area and shape prior constraints.
Through this process, the most similar one with the target
model is determined as the target region.

With the estimated target region in RGB channels and depth
channel, the fusion strategy follows an assumption that if
different cues occur simultaneously in an estimated target
region, then the region belongs to the target. Therefore, a
∼ XOR operator is utilized to achieve the fusion process.

Fig. 1. Typical comparison results of the proposed tracker and seven compet-
itive ones. The demonstrated results are generated by the proposed tracker with
(ours-D) and without depth fusion (ours), SPT [12], OAB [13], SemiBoost
[14], MIL [6], �1 tracker [8], SCM tracker [9] and ASLSAM tracker [15].
Besides, three trackers are selected to incorporate depth clue to be compared
with the proposed one. They are respectively denoted as SPT-D, ASLSAM-D,
SCM-D. The results show that existing trackers without fusing the depth cue
fail to tackle the severe shape or pose variation, small target whose width
is only several pixels, and the cluttered background with the similar scene
to the target. The three trackers including depth clue are also inferior to the
proposed one.

B. Contributions

The main contributions of the proposed tracker are as
follows.

First, this paper proposes a SSDAM for the target estima-
tion. From the review on sparsity-based trackers [28], most
existing appearance models assume that an element in the
dictionary is independent of all others. Obviously, this assump-
tion ignores the correlation among the basic elements, and
may introduce more potential noises when target estimation is
performed. Therefore, this paper introduces a GraphSC [29]
to learn the superpixels’ sparse representation, which uses
a graph Laplacian matrix as a smooth operator to consider
the local geometrical structure of data, and achieves a more
powerful discriminative ability. This is different from [30],
which considers the geometrical structure of the target and
templates, but needs more templates to sparsely represent the
target in the tracking process, and has a higher computational
cost.

Second, it is the first attempt to fuse the depth cue with
superpixel-based target estimation. Traditional pixel-based fu-
sion strategies need pixel-to-pixel registration between the
images from the depth and RGB channels. The fusion strategy
applied in this paper is different in that it works at the region-
level. The only requirement for the later is that the centers of
the target at different images should be generally near each
other. To realize this requirement, the depth and RGB images
are roughly registered and a voting strategy is then adopted.

Last, several video sequences representing different chal-
lenging situations are captured and labeled as the benchmark
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Fig. 2. Flow chart of the proposed tracker.

for the evaluation. Although there are many publicly available
data sets for tracking research [6], [12], [31], they only have
RGB channels. Different from these data sets, the sequences
contributed in this paper have both the RGB and depth
channels for every frame.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III presents the
proposed SSDAM model in detail. Section IV elaborates the
target depth region association, and the depth fusion strategy is
described in Section V. Section VI reports all the experimental
results to prove the effectiveness of the proposed tracker, fol-
lowed by some discussions. Section VII gives the conclusion
in the end.

II. Related Works

Since the proposed tracker in this paper concentrates on the
fusion between depth cue and superpixel-based appearance
model, we restrict the literature review to the trackers that
incorporate depth information. From the investigation of the
trackers fusing depth map, they can be classified into two
categories according to the difference of depth map extrac-
tion: passive-based and active-based. The depth maps from
the passive-based trackers are explicitly recovered from the
multiview images or image sequences, while the depth maps
from the active-based ones are obtained by emitting kinds of
optical lights to measure the distance between the scene and
the camera, one typical example of which is the Kinect sensor.

For the first category, there are many examples [25],
[32]–[34]. Most of these methods recover the depth map by
multiview geometry, which needs to conduct camera collab-
oration and correspondence, leading to a high computational
cost. For example, Michel et al. [32] proposed a monocular
model-based 3-D object tracker. The initial step is to conduct
the camera calibration and define an object model. Then,
they update the object state at current time by matching the
extracted edges and nodes of the object with the predefined
object models. A recent work for multiple person tracking
proposed in [25] also conducted the human tracking from
multiview videos. The strategy for the target extraction is
based on segmentation for estimated depth map and RGB
visual image. Then, they refine the segmentation result by
motion compensation and uncertainty refinement.

As for the second category, a typical example is the Kinect
sensor. Since this kind of sensor can capture the depth map in
real time, many trackers have utilized them [26], [35]–[38]. For
example, several hand trackers [35]–[37] utilized Kinect sensor
to generate the depth map. They conduct tracking by extracting
the hand contour via fusing skin color and hand’s depth. Garcı́a
et al. [26] extended the condensation algorithm to a RGB-D
tracker for arbitrary objects. With the depth extracted from the
Kinect sensor, they train a background/target classifier, which
is boosted from the feature pool of grayscale, color, and depth.
Fanelli et al. [38] presented a 3-D head tracker to estimate the
head pose with Kinect, and extended the regression forests
algorithm to classify the head pose. Teichman and Thrun [39]
described a 3-D tracker based on semi-supervised learning,
whose depth is generated from the LIDAR depth sensor. They
initialize a classifier by the segmented object in the first
frame, and then iteratively retrain the classifier with the new
segmented object.

The aforementioned trackers fusing depth map are all within
the pixel-wise level. Meanwhile, the fusion process commonly
needs pixel-to-pixel registration among images from depth and
RGB channels. With the above literature review, the proposed
tracker in this paper is presented as follows.

III. Sparse Superpixel-based Discriminative

Appearance Model (SSDAM)

In this section, the proposed SSDAM is presented in detail.
First, in order to construct the SSDAM, the superpixel’ feature
representation is described. Then, we draw forth the SSDAM
to compute a coarse confidence map for candidate superpixels.
Based on the assumption that the related target’s superpixels
have similar neighborhoods for two adjacent frames, the
similarity preservation constraint is utilized to refine the coarse
confidence map.

A. Feature Representation for Superpixel

The superpixels in this paper are extracted by the simple
linear iterative clustering (SLIC) [40] segmentation method,
which is simple and has fairly low computational cost.
After that, the photometric and geometrical characteristics are
exploited for its representation.
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Fig. 3. Pie-structure-based histograms for superpixel.

Denote u as a superpixel in the RGB image and mu ∈ R1×3

and vu ∈ R1×3 its mean and variance, respectively. Let au

be the area, and cu=(xu, yu) its centroid of u. To describe
the geometrical distribution of u, the superpixel is parsed
into L pie slices as demonstrated in Fig. 3, each of which
begins at (xu, yu). For each slice, it has a gray histogram.
We select the maximum component hu(l) of each histogram
to represent the superpixel’s distributed gray characteristic,
Hu = {hu(l)|l = 1, ..., L}. The definition for this histogram
structure is inspired by [40]. But this representation is sensitive
to image rotation. To make rotation invariant, Hu is sorted
according to the L values from large to small. Furthermore,
the entropy of the normalized histogram is also calculated to
describe superpixel’s texture. To be specific, it is defined as

eu = −
L∑
l=1

hu(l) log hu(l). (1)

With the above formulation, the feature vector of superpixel
u is defined as Fu = {Pu,Gu}. It comprises the following
two components, the photometric one Pu={mu,vu,eu} and the
geometrical one Gu={au,cu,Hu}, respectively.

As for the photometric and geometrical cues, they are
commonly combined as a vector. However, there is no spatial
correlation between them. Meanwhile, according to [42], it
suggests that different cues should be utilized separately. It
follows an assumption that if one kind of cue fails, another one
can be supplementary. Therefore, in this paper, the photometric
cues are utilized to construct SSDAM. For a supplement and
refinement, the geometrical cues are utilized in the subsequent
processing.

B. Sparse Superpixel-Based Discriminative Appearance
Model

Consider the group of candidate superpixels segmented from
the examined frame. We can estimate each superpixel’s label
indicating the target or background. In this paper, the target
estimation is formulated as a sparse optimal problem. We
suppose each superpixel can be expressed on a set of basic
elements. Therefore, this paper proposes a SSDAM, which,
for the first time, embeds a GraphSC [29] to take account for
the data’s geometrical structure. In the following description,
first, the motivation of utilizing GraphSC is presented, and
then our SSDAM is introduced.

1) Motivation of Utilizing GraphSC: In recent years,
sparse coding has been established as a promising tool for
problem solving in computer vision. The assumption of sparse

coding is that the original data y ∈ Rd×1 can be encoded by
the sparse linear combination of N basic elements

min
a

‖y − Da‖2
F + λ‖a‖1 (2)

where D ∈ Rd×N is the encoding dictionary, a ∈ RN×1

specifies the encoding coefficients, and λ is the Lagrangian
multiplier, which balances the importance of the sparseness
and the reconstruction error. In fact, (2) is known as the
�F -norm form in Lasso, and is exploited in sparsity-based
trackers [8], [9] proposed recently. Although Lasso enjoys
great performance, it is worth noting that this method implic-
itly assumes that an element in the dictionary is independent
of all others. Apparently, it ignores the correlation among the
basic elements, which may introduce more potential noises
when the target estimation is performed. For addressing it,
this paper follows a manifold assumption inspired by [29],
that if two data points xi and xj are close to each other in
the intrinsic geometry, the two data’s representations ai and
aj are also similar to each other. Based on this assumption, a
Laplacian regularizer is incorporated into the original sparse
coding, which exploits the local geometrical structure of data.
Therefore, the motivation of utilizing GraphSC is to integrate
correlations among candidate basic elements (superpixels).
With the motivation of utilizing GraphSC, the detailed fumu-
lation of SSDAM is presented as follows.

2) SSDAM: In this paper, the target searching region is a
rectangle centered at the target location of the previous frame,
twice its size in width and height. Then, it is segmented into
m superpixels Yp = [yp

1 , yp
2 , ..., yp

m], where yp
j = [mj ,vj ,ej]T

is a column vector, and is represented by the photometric
cues. These superpixels construct a nearest neighbor graph
G with m vertices, where each vertex represents a superpixel.
Considering the correlations among superpixels, let W be a
weight matrix of G with Wji = 1 representing two superpixels
yp

j and yp
i are among their related k-nearest neighbors, and

vice versa. Then, a diagonal matrix C is defined to represent

the importance of yp
j , where Cjj =

m∑
i=1

Wji.

With the weight matrix W of graph G, we need to map the
m superpixels to their related k-nearest neighbors, and obtain
a sparse representation coefficient matrix A = [aT

1 , aT
2 , ..., aT

m],
where aT

m specifies the encoding coefficient vector of the mth
superpixel. To realize it, the following objective function is
chosen:

1

2

m∑
j=1

m∑
i=1

‖aj − ai‖2Wji = Tr(ALAT) (3)

where L = C − W is the Laplacian matrix. To minimize this
equation is to find an optimal solution for ai, which is given
by the eigenvector with the smallest nonzero eigenvalue. In
other words, it guarantees that the connected superpixels of the
graph G stay as close to each other as possible. By integrating
L into the traditional sparse coding, our objective function is
defined as

min
A

‖Yp − DA‖2
F +λ1Tr(ALAT )+λ2

m∑
i=1

‖aj‖1,

s.t. ‖dj‖ < c, j = 1, ..., k

(4)
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Fig. 4. Confidence map generated by SSDAM. The left one is the original
segmented RGB image and the right one is the obtained confidence map.

where dj represents the basis vector of D, and c is the radius of
the k-nearest neighbor. λ1 is the coefficient of the regularizer.

In this paper, the dictionary D is generated by k-means from
clustering the superpixels in the target region. For an adaption
to the variation of the target and background, the dictionary
D is constantly updated for every ten frames. Assume the
latest updating time to be ttr, and the number of superpixels
belonging to the target at ttr to be d. Then, the number of
cluster center k is heuristically set as d/6.

In terms of solving A, (4) with �1-regularization is non-
differentiable when aj contains 0. Therefore, an optimization
method based on coordinate descent introduced in [29] is
utilized in this paper, which updates aj individually while
holding all the other vectors constant. Thus, (4) is rewritten as

min
aj

m∑
j=1

‖yp
j −Daj‖2

2+λ1

m∑
i,j=1

LijaT
i aj+λ2

m∑
i=1

‖aj‖1. (5)

Actually, solving (5) is equivalent to solving the following
equation:

min
aj

‖yp
j −Daj‖2

2+λ1LjiaT
i aj+λ2‖aj‖1,

LjiaT
j aj = λ1LjjaT

i aj+2λ1aT
i

∑
j �=i

Ljiaj.
(6)

This can be solved by the feature-sign search algorithm [43],
which is rather slow for pixel-based sparse coding. As in
this paper, the image is represented as superpixels and the
optimization process directly searches the optimal target rep-
resentation among the superpixels. Therefore, the process is
fast and adequate for our object tracking.

After constructing the SSDAM, the confidence Cpt
j of the

superpixel yj in the searching region at time t is estimated as

Cpt
j = e(− ‖yj−Daj‖2

2
σ

) (7)

where the variable σ is fixed to a constant that normalizes
the superpixel’s construction error. All of the confidences of
superpixels, which belong to the searching region, construct a
confidence map Ct

ssdam, where Cpt
j ∈ Ct

ssdam.
From the computed confidence map as shown in Fig. 4,

the estimated target region may introduce some disturbing
superpixels, which is caused by the similar data structure in
the searching region. In order to refine it, this paper proposes a
strategy modeled by the similarity preservation of superpixels’
neighborhoods in two adjacent frames.

Fig. 5. Similarity measurement for two corresponding superpixels in adja-
cent frames.

C. Similarity Preservation of Superpixels’ Neighborhoods

In this subsection, we propose a similarity preservation strat-
egy to refine the coarse confidence map obtained by SSDAM.
Based on the work in [44], the similarity measure depends on
not only two individual samples but also their corresponding
contexts. Our principle is that not only the superpixels of the
target in adjacent frames should have a similar characteristic,
but also their neighborhoods should resemble each other. This
assumption holds the same view as the work in [44]. To
realize this principle, the connection between the superpixel
itself and its local neighborhoods is defined first, which is
called self-connection as shown in Fig. 5. Then, the similarity
between superpixels in two adjacent frames is computed. With
the calculated similarity, the most reliable superpixels are
maintained and the less confident ones are discarded. Finally,
the refined confidence map contains almost only the target
superpixels with high confidences.

1) Definition of Self-Connection: Denote xg
i to be one of

the target’s superpixels at time t − 1, and yg
j to be one of the

superpixels belonging to the searching region at time t. Every
superpixel here is represented by its geometrical cues. The
connection between the superpixel xg

i and its 4-neighborhoods
{xg

p}4
p=1 is defined as the distance between the Hi and each Hp.

Here, the X 2 test statistic is selected as the distance metric

ρi,p =
1

L

L∑
l

(hi(l) − hp(l))2

hi(l) + hp(l)
(8)

where L is the pie slice number of the superpixel. Similarly,
the connection between the superpixel yg

j and its neighbor-
hoods {yg

q}4
q=1 at time t is defined as ρj,q.

2) Similarity of the Target’s Superpixels: To weigh the
similarity of the corresponding superpixels of the target, their
appearances are compared with each other, in addition to their
self-connections. We also take xg

i and yg
j as an example. The

matching cost is set as

W(i, j) = ω(i, j) + fi,j

ω(i, j)=

∣∣∣∣ ai

aj

− 1

∣∣∣∣ + ρi,j +
4∑

p=1,q=1

(∣∣∣∣ap

ai

− aq

aj

∣∣∣∣ + |ρi,p − ρj,q|
)

fi,j =
‖ci − cj‖2

r
(9)

where ω(i, j) indicates the correlation of superpixels’ areas and
gray scale distributions in two adjacent frames. fi,j specifies
the displacement of superpixels’ centers in two adjacent frames
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and the normalizing factor r is set to 20 in all experiments.
The similarity degree of xg

i and yg
j is then defined as e−W(i,j).

Based on the above formulation, the confidence of super-
pixel yg

j is recomputed as

Cpt
j =

{
Cpt

j if e−W(i,j) > T (i, j)
0 if e−W(i,j) < T (i, j)

(10)

where T (i, j) = max(exp(−W(i, j))) − σf denotes a threshold
that represents the similarity degree of the related superpixels,
and σf denotes the standard deviation of exp(−W(·)). After
refining Cpj for each superpixel, a final confidence map Ct of
the searching region can be obtained, where Cpj ∈ Ct . In this
map, the region of the target is generally maintained and the
unrelated ones are mostly discarded.

IV. Target Depth Association

As mentioned before, this paper focuses on the fusion of
the target appearance and depth cues. For the generation of
the related depth map, Kinect sensor is employed, which was
released by Microsoft on November 2010 and is very effective
in generating real-time sequences.

After obtaining the depth sequence, we need to associate
the candidate target depth with the predefined target depth
model in the first frame. With respect to extracting the depth
region at current time, an efficient graph segmentation [27] is
employed to segment the searching region into several regions.
With the previously defined depth model, the new target depth
region is associated according to the regions’ depth histogram,
area and shape prior. In the following, the depth model is first
defined and the strategy of the target depth association is then
introduced.

A. Depth Model of Target

The target’s model is represented by the depth distribution,
area, and shape. For the depth distribution, it is denoted by a
normalized depth histogram. In terms of the shape cue, this
paper introduces a signed distance function inspired by [45].
To be specific, given a shape region � ⊂ R2, denote x to be
its centroid. The signed distance function is then defined as

φ =

{
+1, x ∈ �

−1, x ∈ R2\�.
(11)

This strategy is illustrated in Fig. 6, where Dcb←Dcb × φ

specifies the distance between the boundary and the centroid x.
By that, a normalized shape histogram is obtained by counting
the statistics of Dcb.

After the above definition, the target’s model is denoted as
three parts, depth histogram HDo, area ro, and shape histogram
HSo.

B. Association of Examined Depth Map

Assume the target’s depth searching region at time t is
segmented into Nt regions. Their characteristics are denoted
by HDn

t , rn
t and HSn

t , where n = 1, ..., Nt is the index of the
segmented depth region. The association constraints are then
expressed as three-fold: target’s depth histogram constraint,
area constraint, and shape prior constraint.

Fig. 6. Shape histogram. (a) Centroid of the region is inside of the region.
(b) Centroid of the region is outside of the region. (c) Normalized shape
histogram of (a). (d) Normalized shape histogram of (b). The bins’ number
of shape histograms is set as 100 for all experiments.

For the target’s depth histogram constraint, it is defined by
matching the depth histogram {HDn

t }Nn=1 at time t and HDo

with X 2 test statistic

DHD
t (o, n) = 1

I1

I1∑
i=1

(HDo(i)−HDn
t (i))2

HDo(i)−HDn
t (i)

DHDn

t = exp(− DHD
t (o,n)

max(DHD
t (o,n))

)
(12)

where DHD
t (o, n) represents the matching cost of HDn

t and
HDo, DHDn

t is the normalization of DHD
t (o, n), and I1 is the

number of bins in the target’s depth histogram (set to 255).
With respect to the area constraint, the principle is that the

target’s area should be constant in a few successive frames.
Therefore, the area distance is defined as e−|(rn

t /ro)−1|.
In terms of the shape prior constraint, it is defined by

matching the {HSn
t }Nn=1 and HSo with modified X 2 test

DHS
t (o, n) = 1

I2

I2∑
i=1

(HSo(i)−HSn
t (i))2

|HSo(i)−HSn
t (i)|

DHSn

t = exp(− DHS
t (o,n)

max(DHS
t (o,n))

)
(13)

where DHS
t (o, n) represents the matching cost of HSn

t and HSo,
DHSn

t specifies the normalization of DHS
t (o, n) and I2 is the

number of bins for shape histogram (set to 100). The | · |
operator could make DHS

t (o, n) avoid a negative value that
may generate a false matching.

With the above distance constraints, the target’s depth region
at time t is estimated as Ot , whose depth histogram, area, and
shape histogram are subject to

arg max
n

{γDrn

t DHDn

t + (1 − γ)DHSn

t } (14)

where γ is set to 0.5, empirically.
With the depth association, all of the pixels falling into Ot

is set to 1, and 0 vice versa.
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V. Fusion of Target Estimation

and Depth Association

With the estimated target and the associated depth region,
the fusion process is conducted in this section. In this paper,
we adopt a simple but efficient approach for fusing the
confidence map Ct obtained by SSDAM in RGB channels and
the associated depth region Ot in depth channel.

For the fusion of Ct and Ot , we follow an assumption that
if the superpixels belong to both Ct and Ot , the superpixels
belong to the target. Therefore, the fusion process can be
formulated as

Cin
t = Ct � Ot (15)

where Cin
t represents the confidence map falling into Ot , and

� is the ∼ XOR operator. One example of the fusion result
is shown in Fig. 2.

The obtained Cin
t covers most of the target region as illus-

trated in Fig. 2, which can provide a credible clue for further
accurate localization. Based on Cin

t , five candidate target states
{Xf

t }5
f=1 are sampled. Each candidate target state is constructed

by a group of superpixels whose confidences are the top K

ones in Cin
t . Assume the number of target’s superpixels is

estimated as Kt−1 in previous time. For a robust selection
of K, it is chosen as five values: {Kt−1 − 2, Kt−1 − 1, Kt−1,
Kt−1 + 1, Kt−1 + 2}.

For a robust localization of the target, the estimation of
X̂t follows an assumption: The target state Xt to be predicted
depends on not only the previous target state Xt−1, but also the
most recent target state Xttr . Denote the target state at time t

to be Xt = [xt, yt, wt, ht, st], where xt and yt denote the center
of the target, wt and ht represent the width and height of the
target, and st specifies the ratio of wt and ht .

The optimal target state at time t is determined by maxi-
mizing a posteriori

X̂t = arg max
f

p(Xf
t |Xt−1)p(Xf

t |Xttr ) (16)

where p(Xf
t |Xt−1) is determined by the Gaussian distribution

N (Xf
t ; Xt−1, 
t), p(Xf

t |Xttr ) is estimated by exp(−‖Xf
t −Xttr ‖2

2
rttr

),
and rttr is set to be a constant (set to 20 in all experiments)
for balancing the importance of Xttr and Xf

t . So far, the target
localization is presented. The steps of the proposed tracker are
summarized in Algorithm 1.

VI. Experiment Results

A. Data Sets

This paper aims to design a robust tracker via depth
fusion. However, the publicly available data sets only have
the RGB channels, and are not adequate for our experiments.
In this paper, four challenging video sequences with depth
channel captured by ourselves are contributed to prove the
effectiveness of the proposed tracker. All of the sequences are
recorded by the Kinect sensor. Typical frame shots of RGB
channels and their corresponding depth channel are shown in
Fig. 7. The challenges of these sequences contain large shape
and illumination variation (Book), drastic pose change (Bear),

Algorithm 1 Proposed Tracker

Initialization:
Initialize all parameters in our tracker before tracking.

All of these parameters are presented in experiments
in detail.

Updating:
for t = ttr
1: Segment the surrounding region of Xttr into mttr su-

perpixels and extract their feature pool {Fj}mttr

j=1 .
2: Select the superpixels belong to the target at time ttr to

update the dictionary D.
end
Tracking:
for t = ttr to ttr + m (m is set as 10 in this paper)
1: Segment the surrounding region of Xt in to mt superpix-

els and extract their features. Compute the target confi-
dence map Cssdam using (7).

2: Refine the Cssdam and obtain Ct by (10).
3: Segment the depth map of the target searching region at

time t into Nt segments, and associate the target depth
regionOt by (14).

4: Conduct the fusion by (15).
5: Sort the values of Cin

t in a descending order.
6: Select K superpixels with the top K values in Cin

t ,
where K is denoted as five selections: {Kt−1 − 2,
Kt−1 − 1, Kt−1, Kt−1 + 1, Kt−1 + 2}.

7: Select the bounding box for the five group superpixel
sets, and compute their related target state Xf

t , f =
1, ..., 5.

8: Conduct the localization by (16).
end
Output: X̂t .

Fig. 7. Four challenging video sequences captured in this paper. (a) Book.
(b) Bear. (c) teaCan. (d) Paper.

small target (teaCan) and heavy cluttered background with the
similar appearance to the object (Paper). The frame size of
every video sequence is 195 × 240, and the frame numbers
are 700, 233, 200 and 100, respectively.

B. Implementation Details

First, the parameter configuration in this paper is presented.
Then, the experimental setups are designed for the trackers’
performance analysis.

1) Parameter Configuration: In this paper, the super-
pixel generation is conducted by the SLIC [40] segmentation
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TABLE I

Parameter Configuration for Superpixel’s Generation and

Depth Region Generation

method, which adapts a k-means clustering method to generate
superpixels efficiently. In this method, there are two parame-
ters to be set, which are the size of sample interval (SI) and
the superpixel compactness (SC). The detailed parameters of
superpixel generation are given in Table. I. Among them, the
setting of SI is related to the target scale. For example, SI
for teaCan sequence is apparently smaller than others. The
reason is that the target needs enough number of superpixels
to represent it. The parameter SC controls the superpixel’s
compactness. In this paper, the superpixels for all kinds of
targets need to maintain compact. So SI is set the same for all
sequences. For the number of pie slices L in (1), it is set to
8, which is adequate for the superpixel representation in this
paper, especially for the small superpixels, which cannot be
parsed into more than 8 pie slices.

In addition, for depth region generation in Section IV,
efficient graph segmentation is introduced to segment depth re-
gion. The parameters for this algorithm are K, σ and Minarea,
where K controls the difference between two segmented
regions, σ the smoothing parameter controlling the connection
between adjacent segments and Minarea the minimum area of
the generated segments. Similarly, the detailed setting for all
the parameters is shown in Table. I. Based on the physical
meaning of each parameter, we know that K and Minarea are
related to the target’s scale. Therefore, for teaCan sequence, K

and Minarea are smaller than others. As for σ, the connection
between adjacent segments for all the sequences is the same.

In addition, for the generation of Laplacian matrix L in (3),
the detailed configuration is set as follows. The neighbor mode
for L is k-nearest neighbor, and the number of neighbors is
set as 5. Meanwhile, the distance metric is chosen as Cosine
metric, and the weighting mode is selected as HeatKernel. λ1

and λ2 in (6) are set as 0.01 and 0.05, respectively.

2) Experimental Setups: In order to prove the efficiency
and accuracy of the proposed tracker, competitive ones rep-
resenting the state-of-the-art are utilized to contribute the
comparison with the proposed tracker. Among them, the most
similar work to this paper is the superpixel tracking (SPT)
[12]. In addition, since this paper utilizes sparse coding,
trackers by sparsity-based collaborative model (SCM) [9],
adaptive structural local sparse appearance model (ASLSAM)
[15] and �1 minimization (�1) [8] are also involved in the
comparison. In addition, three popular trackers, OAB [13],
SemiBoost tracker (SemiBoost) [14], and MIL tracker [6],
which are considered baselines in this field are also included

in the comparison list. The codes of all these trackers can be
downloaded from the authors’ web sites.

In addition, in order to illustrate the importance of the depth
cue, we also conduct experiments with (ours-D) and with-
out (ours) depth fusion. Since the proposed tracker includes
both the RGB channels and depth channel, we also want to
compare it with the ones including the RGB-D channels. But
unfortunately, there is not publicly available tracking code
fusing depth information to the best of the authors’ knowledge.
Therefore, to be fairer, this paper selects three trackers (SPT,
ASLSAM and SCM) that are most related to this paper, and
fuses the depth cue into them, denoted as SPT-D, ASLSAM-D,
and SCM-D. As for choosing SPT, the reason is that it exploits
the superpixel representation. Besides, because ASLSAM and
SCM represent the state-of-the-art for sparsity-based trackers,
they are also selected to prove the efficiency of fusion for depth
cues. The related parameters of every tracker are carefully
adjusted and the best result of every tracker is selected from
five runs. The detailed fusion strategies of SPT, ASLSAM and
SCM are expressed as follows.

1) SPT-D: Combine the depth information into the appear-
ance histogram of each superpixel originally modeled
by the clues from the RGB channels.

2) ASLSAM-D: Design a tracking flow similar to the
ASLSAM in depth channel, and select the target state
with maximum confidence obtained from RGB and
depth channels for every frame.

3) SCM-D: The fusion strategy is similar to ASLSAM-D.

For a clearer demonstration, all the trackers are analyzed
together in the quantitative evaluation and qualitative analysis.

C. Tracking Performance Analysis

In this subsection, we first conduct the quantitative evalua-
tion. The evaluation metrics of quantitative evaluation are cen-
ter location error (CLE), precision with accepted bias (PAB),
and average center location error (ACLE). The CLE represents
the displacement (in pixels) between the generated center and
the ground truth for each frame in a sequence. PAB describes
the tracker’s stability, which is represented as the ratio of
frames whose center location errors are below a predefined
threshold. ACLE specifies the average center location error of
all the frames in every sequence. In this paper, CLE and PAB
are presented in Figs. 8 and 9, and ACLE is shown in Table II.
From CLE and PAB, the demonstrated results indicate that
ours-D is superior to other trackers, especially for the Bear,
teaCan, and Paper sequences. In addition, the depth cue can
apparently improve the trackers’ performance. In the following
description, the qualitative analysis of the trackers for tackling
the following challenges is presented in detail.

1) Large Variation of Shape and Illumination: The first
row (Book sequence) in Fig. 10 shows that the Book has severe
shape deformation, such as rotating, folding and unfolding.
Besides, the book cover appears illumination varying with
the fowards and backwards movements. From the results in
Fig. 10, the OAB, SemiBoost, �1, SCM and ASLSAM trackers
drift to the background area. The reason is that these trackers
are not designed for nonrigid objects, and the bounding box of
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Fig. 8. Center location error. Horizontal axis is the frame index. Vertical axis is the location error (in pixels) between the target center and the ground truth.
To be clearer, the trackers fused depth cue are all demonstrated by solid lines, and the trackers without fusing depth cue are represented by dashed lines.

Fig. 9. Precision with accepted bias. Horizontal axis represents an accepted threshold bias (in pixels) between the target center and the ground truth center.
Vertical axis is the ratio of the number of frames whose location error is below the threshold.

TABLE II

Average Center Location Error (in Pixels). BOLD in Each Row Is the Best Choice, IT ALIC Is the Second

the target is fixed and may introduce background interference.
For the MIL tracker, although it shows an excellent location
precision as shown in Figs. 8 and 9, the tracked bounding
box shrinks to a small point, shown in the 464th frame. In
other words, the scale adaptation of MIL tracker is inferior.
In addition, SPT tracker is designed to tackle the shape
deformation, but during tracking, the target introduces other
cluttered background, such as the Bookcase in the 303th frame.
Therefore, SPT also drifts to background area at last. As for
our tracker without fusing depth cue, the tracking accuracy
is a little weaker than the ASLSAM tracker representing the
state-of-the-art. The main reason is that our SSDAM without
background appearance model is vulnerable to the background
clutter. With the depth map which can restrict the target
at an approximately accurate location, the performance of
SPT-D, ASLSAM-D and SCM-D improve obviously. How-
ever, ours-D demonstrates a superior performance for the
shape deformation and varying illumination, especially for the
scale adaptability.

2) Drastic Pose Change: The second row (Bear sequence)
of Fig. 10 demonstrates that the Bear has a drastic pose
variation. For the SPT, it is easy to be disturbed by the
background clutter. Therefore, it shows a drift in early frames.
Because the shape of the Bear is nonregular, the SCM and
ASLSAM trackers, which initialize the target bounding box
as a fixed rectangle, may introduce much background clutter,

such as the Door from the 180th frame to the 230th frame.
Another reason for the performances of SCM and ASLSAM
is that the Door has the similar appearance cues to the Bear.
Therefore, its template updating treats the template extracted
from the Door region as positive. That is why drift occurs
in SCM and ASLSAM trackers from the 180th frame to the
230th frame. For the OAB, SemiBoost and our tracker without
fusing depth cue, they are influenced by the same issue as the
one of SCM and ASLSAM. As for the MIL tracker, the holistic
appearance model may put an inferior template into its positive
bag. Therefore, the inferior template causes a severe drift. It
seems that the �1 tracker demonstrates a good performance for
the pose variation. However, the �1 tracker is influenced by the
trivial background pixels more or less, shown in the 109th and
136th frame. This issue can also be verified in Fig. 9. After
fusing depth cue, SPT-D, ASLSAM-D and SCM-D improve
oneself obviously. Especially for the SCM-D, it can restrain
the influence of Door region. However, its scale adaptability
is a little weaker than ours-D. All in all, the proposed tracker
is superior to the others.

3) Small Target: The object teacan in the teaCan sequence
is rather small. By this sequence, the trackers’ ability for
tracking small objects can be evaluated efficiently. From the
video shots in Fig. 10, ours-D can track the teacan very
accurately. Although the bounding box of ours-D is a little
larger than the ground truth, taking the 94th frame as an
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Fig. 10. Some representative experimental results, which are generated by SPT [12], OAB [13], SemiBoost [14], MIL [6], �1 [8], ASLSAM [15], SCM [9],
ours, SPT-D, ASLSAM-D, SCM-D and ours-D, respectively. (a) Book sequence. Large variation of shape and illumination. (b) Bear sequence. Drastic pose
change. (c) teaCan sequence. In this sequence, the object is rather small. (d) Paper sequence. In this sequence, the background has the similar appearance
with the object.

example, the tea can can be located in the center of the
bounding box for all frames. However, the other trackers all
generate drift. For the MIL, SCM, ASLSAM and �1 trackers,
they initialize several positive templates which surround the
target center by several pixels away. As for this sequence,
the initialized positive templates may contain the part of
background clutter owning to the small size of the target. As
for the SPT tracker, the segmented superpixels are rather small.
The obtained confidence of the superpixels splits into several
parts. The problem also exists in our tracker without fusing
depth information, but the depth map of the target can guide
the proposed tracker to an accurate location. As for the other
trackers fusing depth cue, it seems that ASLSAM-D shows a
similar tracking performance to ours-D. However, it shows a
drift in the 152th frame. Therefore, the proposed tracker excels
the other trackers in performance.

4) Cluttered Background With the Similar Appearance to
the Target: The last sequence Paper is designed to evaluate
the performance for tackling the cluttered background with
similar appearance to the target. In this situation, the trackers
modeled in RGB channels have limited ability to distinguish
the target with the background. But for the depth map, as
shown in Fig. 7, the target’ appearance is apparently different

from the background. With this superiority, the trackers fusing
depth cue are obviously better than the related ones in RGB
channels, as well as the proposed tracker. However, from
Fig. 9, ours-D absolutely demonstrates better performance than
SPT-D, ASLSAM-D and SCM-D. From this phenomenon, the
superiority of depth association strategy proposed in this paper
is verified. In addition, the scale adaptability of ours-D is
apparently better than ASLSAM-D and SCM-D shown in the
87th and 64th frames, respectively.

D. Discussion

In this section, we present two points for further discussion.
First, this paper only demonstrates a framework for sparse
superpixel-based object tracker via depth fusion. Any other
adequate feature representations for superpixel and the depth
association model can be embedded in this framework.

Second, the computational cost of the proposed tracker is
lower than the existing sparsity-based trackers representing
the state-of-the-art, such as �1, SCM. The detailed analysis is
described as follows. The �1 tracker needs to initialize almost
N = 600 templates to generate the appearance model. Each
template is constructed by pixel-level prototypes. Meanwhile,
the number of candidate templates is set as K, (K ≈ 300).
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TABLE III

AverageT imeConsuming (ATC /s) for Different Trackers on Different Sequences. BOLD Ones in the Average Row Represent the

Average Running Time of the Sparsity-Based Trackers on All the Sequences

The cost is represented as O(NM) × O(KM), where M is
the number of the pixels in the template. The SCM also
needs many templates to generate its appearance model. In
their work, the number of templates is chosen as n = 250,
which contains 200 negative ones and 50 positive ones. Every
template is divided into m (m << M) patches. In addition,
the number of candidate templates is set as k, (k ≈ 300).
Therefore, the computational cost of SCM is O(nm)×O(km).
As for this paper, the sparse superpixel-based appearance
model is constructed by U superpixels, where U is the number
of superpixels belonging to the target and within [10–100]. The
candidate superpixel number V for the new target searching
region is within [150–300]. Therefore, the computational cost
is O(U) × O(V ). From the analysis, it can be seen that the
proposed tracker is more computational efficiency.

In order to further analyze the computational cost of differ-
ent trackers, their actual running time for different sequences is
compared in Table. III. It is noted that the number in Average

row in this table represents the average running time of all the
sequences. For a fair comparison, the compiler of each tracker
is also listed in the table. From the table, it can be seen that our
tracker without exploiting depth cue is the fastest one in the
sparsity-based trackers. Meanwhile, after fusing depth cue, the
computational cost of the trackers is a little larger than their
original ones without fusing depth information. However, the
proposed tracker is still the fastest one compared with the other
three fusing depth cue.

VII. Conclusion

In this paper, a robust superpixel-based tracker via depth
fusion is proposed. With the more promising superpixel-based
image cues, the target’s appearance representation is efficiently
constructed. To realize the superpixel-based target estimation,
GraphSC is introduced for the first time to constrain the
SSDAM, which embeds the geometry relationship of data into
the optimal objective function and achieves more powerful
discriminative ability. In addition, the depth clue of the tar-
get, which provides more discriminative visual information
under the cluttered scene, is fused into SSDAM. To prove
the tracker’s robustness, four challenging video sequences
captured by ourselves are contributed to evaluate the trackers’
performance under different situations, such as large variation
of shape, pose, and illumination, small object and cluttered
background with similar appearance to the target. Several com-
petitive trackers representing the state-of-the-art are compared

with our tracker, and the comparison results indicate that the
proposed tracker is more robust.

In the future, we plan to introduce more clues for the target
representation, such as the infrared information. In addition,
we also intend to focus on trajectory-based abnormal event
detection.
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